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Modified equations for heat conduction and entropy 
production 

S Simons 
Department of Applied Mathematics, Queen Mary College, Mile End Road, London El ,  UK 

Received 18 May 1973 

Abstract. A microscopic derivation is given of the changes required in the classical equa- 
tions for heat conduction and entropy production due to the existence of a finite mean 
free path for thermal carriers. The modified equation for heat conduction is in agreement 
with previous suggestions, but the result for entropy production differs from that suggested 
in an earlier discussion. 

1. Introduction 

It has been pointed out on many occasions (Maxwell 1867, Cattaneo 1958, Vernotte 
1958, Ulbrich 1961, Chester 1963, Kranys 1966a, b, Luikov 1966, Gurtin and Pipkin 
1968, Carrassi and Morro 1972, Lambermont and Lebon 1973) that the phenomeno- 
logical law of heat conduction 

J =  - K g r a d T  (1) 
requires to be modified in the presence of rapid changes of heat flux J ,  since equation (1) 
coupled with the conservation of energy equation gives rise to the well known conduction 
equation 

(2) 
aT c- = KVT. 
at 

The latter equation, being parabolic, predicts an infinite velocity of propagation whereas 
the true velocity cannot exceed that of the thermal carriers. It was therefore suggested 
by the above authors that the heat conduction equation should be modified to 

where T is a characteristic relaxation time for carrier collisions. This equation clearly 
reduces to the form (1) when J does not change substantially over times of the order 
of 5, and at  the same time it gives rise to a modification of equation (2), which being 
hyperbolic, corresponds to a finite propagation velocity. However, apart from some 
rough kinetic theoretical arguments no fundamental basis has been given for the modified 
equation (3), and it is the purpose of the present paper to remedy this. 

A problem of a similar nature arises with the classical relation 

dS 1 dU 
dt T dt (4) _ -  
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between the entropy per unit volume S and the internal energy per unit volume U. 
It is readily shown that equation (4) yields a rate of entropy production per unit volume 
U given by o = - JT-’ . grad T, and if the relationship (1) holds this leads to 0 = J 2 / K T 2 ,  
a quantity which is intrinsically positive. If, however, the modified relationship (3) 
holds, the corresponding modified form for U is not necessarily positive. It has therefore 
been suggested by Lambermont and Lebon (1973) that corresponding to the modification 
(3) in the conduction equation, a modification should be introduced in the entropy 
equation (4) in order that U should remain intrinsically positive. The modification they 
suggest is 

d J  
grad T .  - dS 1 dU z 

dt T dt T dt 
- = 

since this leads to 

2 ts = *( 1 J + z y  . 
( 5 )  

The purpose of the present paper is to consider the required modifications of 
equations (1) and (4) from a microscopic viewpoint; that is, basing their derivation on 
the Boltzmann equation which governs the transport of the thermal carriers. For the 
sake of simplicity we shall assume these carriers to be phonons in order to avoid the 
additional complications of varying electric and magnetic fields that would occur with 
electrons. We proceed in $ 2 to set up the relevant Boltzmann equation for the situation 
where the phonon distribution is everywhere close to a local equilibrium distribution, 
but in which the temperature characterizing this equilibrium is allowed to possess an 
arbitrary variation in space and time. An infinite power series solution of this equation 
is then obtained which is valid when the changes in temperature are not too rapid, and 
in $ 3  and 0 4 the solution is used to calculate J and dS/dt. This solution is initially 
obtained in terms of the inverse of the phonon collision operator and on approximating 
this operator by a model, the solution is expressed as an infinite power series in the 
relaxation time z. It is therefore to be expected that the required modifications of 
equations (1) and (4) should be obtained as the first few terms of this infinite power 
series expression. However, since the solution is really an infinite series, these first few 
terms will only be reliable when they are sufficiently small for the series to converge, 
and this means that the argument of Lambermont and Lebon, based on the necessarily 
positive nature of U for all z, and leading to equation (5 ) ,  is in fact invalid. Thus, even 
if the result (4) were to remain unchanged we would obtain 

J 

and it is certainly possible that U remains positive for all values of z for which the true 
infinite series solution converges. In fact, even this is not necessary since it is clearly 
possible for a finite number of terms of a convergent infinite series representing a 
necessarily positive function such as U to be itself negative4onsider the first two terms 
of the expansion of (1 +x)-’ for $ e x c 1. It follows therefore that the positive nature 
of U can offer no guide to the required first-order modification of result (4). In fact, it 
will be shown in this paper that while equation (3) is correct to first order, the modified 
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equation (4) takes the form 

dS 1 dU z d J  
- ---+- radT.- 
dt T dt T Z g  dt 

- 

in which the correction term is exactly minus that suggested by Lambermont and Lebon. 
It will also be shown that the corresponding proportional change in r~ compared with 
the classical result is proportional to z2, while in the result ( 5 )  it would be proportional 
to ?. 

2. Boltzmann equation and solution 

Let f ( k ,  r ,  t )  be the distribution function for phonons of wavenumber k at position r 
and time t. Then the Boltzmann equation for the phonons takes the form 

3) = u p - + -  af af 
at ax, at 

where up is the phonon velocity (summation convention assumed) and af/at), is the 
rate of change offdue to collisions. We supposefto be close to a local Bose-Einstein 
equilibrium distribution F(E, T), where E is the phonon energy and T T(r, t), and let 

Then 

where L is the standard linear collision operator (Ziman 1960), and on defining the 
linear operator M by 

M = - T ( z )  aF - l  L, 

we obtain equation (6) in the form 

(9) 

We wish to obtain a solution of equation (9) as a series involving inverse powers of the 
operator M. The difficulty here is that since energy is always conserved in interparticle 
collisions, M E  = 0 (Simons 1960), and this means that M does not possess a true inverse. 
To deal with this we proceed to take the scalar product of both sides of equation (9) 
with E, where the scalar product of functions A(k)  and B(k) is defined by 

the integral being taken over all k space. It can be shown that M is self-adjoint, that is, 
(A ,  M B )  = ( M A ,  B), and thus we obtain 
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since (E,  Eu,) = 0. Eliminating aT/at between equations (9) and (10) then yields 

Further, if we define T to be the actual temperature at r, t (as would be measured by a 
minute thermometer placed there), then equating the total energy densities gives 

J f E d k  = JFEdk ,  

whence it follows from equation (7) that 

(4, E)  = 0. (12) 

Now it follows from equation (12) that 4 lies in the function subspace 9 orthogonal to 
E, and within 93, the operator M does possess an inverse since within this subspace 
M T  = 0 has no nonzero solution. Further, for any function B(k), the function 

will lie in 9 since (Re ,  E )  = 0, and so the two bracketed expressions on the left-hand 
side of equation (1 1) both lie in 9, as also does the right-hand side. If we therefore restrict 
the domain of M to 9, equation (1 1) may be expressed in the form 

aT 4 = ( M - ' E U  )- 
p ax, (14) 

where the operator R is defined in equation (13). This equation has the formal solution 

aT 
X ( M - ' E U  )- 

p ax ,  

where the R operator has been omitted in front of the a/at terms, as the relevant function 
lies automatically in 9. It will be shown presently that within the framework of a 
relaxation time approximation the error in satisfying equation (14) with the solution 
(15) curtailed after n -  1 terms is of the order of t "  times an nth differential coefficient 
of T with respect to space or time, and so we would expect the solution (15) to be satis- 
factory if the change in temperature over a mean free path is not too great. 

We proceed to consider further the first three terms of equation (15) as these are 
required later. On expanding we obtain 

a 2  T + ( M  - 'RU,M - ' E U  )- 
aT a 2  T #I = (M- 'Eu  )-+(M-'Eu,)- 

q ax ,  ax,  p ax, ax, at 

a 3  T + ( M -  'U$- 'RV,M - EU,) 
a 3  T 

+ ( M - 3 E ~  )- 
p ax, at2 ax,  ax,  ax, 

a 3  T + ( M -  RV,M - 2 ~ ~ q +  M - ~ R U , M -  ' E U  ) 
q ax ,  ax, at' 
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In order to  further simplify these results we shall now assume that the collision operator 
M can De satisfactorily approximated by a model of the type considered by Simons 
(1971). Since M conserves only the energy we take 

where ~ ( k )  is a relaxation time whose k dependence corresponds to the singular part 
of the true collision operator. Now 

only possesses a solution if Z lies in Y; that is, if (E ,  Z )  = 0, and if this condition is 
satisfied and the model (17) is used, it is clear that a solution of equation (18) is given 
by $(k) = -z(k)Z(k). This solution may, however, not lie in 3. Under such circum- 
stances we therefore take as the solution of equation (18) 

Thus with the model (17), the solution (16) reduces to 

a T  a2 T a2T  a 3  T 
ax, ax, at q ax, ax, ax, at 

4 = -(~Ev,)-+(T~Ev,)-+(RTRv,TEv ) - - ( T 3 E V p ) 7  

a 3  T - (RrRu,~~Et i ,+ R T R T R V ~ T E V  ) 
a 3  T 

ax, ax, ax, 
- (T~~,RTRv,TEv,) 

q ax, ax, at  

(20) 
since if Z ( - k )  = -Z(k) ,  the R operator on the right-hand side of equation (19) can be 
omitted. A final simplification occurs if ~ ( k )  can be taken as independent of k.  This 
yields 

a 3  T 
r3(Eti )- 

aT a2 T a2 T 
ax, p ax, at pq ax,ax, p ax, a t 2  

b = -T(E~.,)-+T~(Ev )-+T~(R )-- 

a 3  T - a 3  T 
- T ~ ( v  p R qr ) ax, ax, ax, 2T3(Rpq)ax, ax, at  

where R ,  = Rv,v,E. 

(14) the magnitude of the error in satisfying the latter is readily seen to be 
If the solution (15) with n - 1 terms on the right-hand side is substituted into equation 

n -  1 

(22) 

if the model (17) is used with a constant relaxation time. It is clear that all terms in Y 
are of the form T" times an nth differential coefficient of Twith respect to space or time-in 
agreement with the result stated earlier. 
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3. The heat current 

We proceed to calculate the heat current J, corresponding to the solution (16). By the 
usual argument 

and therefore 
aT a2 T 

p ax, p ax ,  at 
-8n3TJ, = (Eo,, 4) = (v,E, M - ' E v  )-+(v,E, M-'Ev  )- 

a 3  T 
axp ax, ax, 

+ (v,E, M-3E~, ) -  a3  + M -  'U$- ' R ~ , M  - 1 ~ v , )  
ax, a t 2  

the other terms are zero since the integrand in the scalar product is an odd function 
of k. On calculating (M-lEo,, a+/&) with the solution (16) we obtain 

(Eu,, 4)- M-'Eu,, - ( ;:) 
(24) 

aT a 3  T 
p ax, ax, ax, ax, = (u,E, M- 'Eu  )-+(v,E, M-'u,M-'Rv,M-'Ev,) 

retaining terms up to the third differential coefficients of T. If we now employ the 
model (17) with constant z on the left-hand side of equation (24), it follows from 
equation (23) that 

a J ,  aT a 3  T 
at 8% ax, ax, ax, J,+T- = -Ksp--Lsw, 

where 

K,, = - (u,E, M - ' Eu,) 
8n3 T 

and 

1 
8n3 T Lspqr = -(u,E, M -  'v,M- Ru,M- 'EO,). 

It is readily shown by a consideration of the Boltzmann equation for the steady state 
that K ,  is the usual conductivity tensor. Equation (25) thus verifies that equation (3) 
is true if terms up to and including second differential coefficients are included. 

The first correction term to equation (3) is the last term in equation (25), and we 
now proceed to estimate the tensor Lspqr contained in it. We employ the model (17) 
with constant T and also assume that the phonon speed o is independent of k. If a, is 
the cosine of the angle between k and the x p  axis it is then readily shown that 

where I = U T  is  the mean free path for phonon interactions and J dR is an integral over 
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solid angle. For one-dimensional flow this gives L = &12K and equation (25) then 
yields 

aJ a T  4 a3T 
J + ~ -  = -K----I~K-.  

at ax 15 ax3 

4. Entropy production 

We begin with the statistical-mechanical definition of entropy per unit volume 

s =  -_ [ { f l  n f - ( l + f ) l n ( l + f ) } d k  
8 x 3  

where k is Boltzmann's constant (Landau and Lifshitz 1958). It follows that 

We substitute for f from equation (7), and retaining only terms linear in 4, since f is 
close to F, we obtain 

- as - - --[%ln(-) k af F d k - - - - [ - + d k .  1 af 
at 8 x 3  l + F  8x3T2 at 

For a suitable choice of the entropy flux vector H ,  we would expect equation (29) to be 
capable of being expressed in the form 

dS 
- = -div H + a  
dt 

where D is the rate of entropy production per unit volume due to phonon interactions, 
and is necessarily positive. The precise way in which this can be done is shown in the 
appendix. 

On using the result F = (exp(E/kT)-l)-' it follows that the first term on the 
right-hand side of equation (29) takes the form 

where U is the internal energy per unit volume. Equation (29) becomes 

and the second term on the right-hand side thus corresponds to the departure from the 
classical equilibrium result dS/dt = T -  ' dU/dt. We investigate this departure by 
substituting for 4 from equation (16), retaining the first three terms of the latter equation 
corresponding to the first two terms of the expansion (15). It follows that 

/ $ 4 d k  = d T / ~ ( M - ' E t . , ) d k + - S a f ( M i E u $ d k  a2 T 
axp  t ax, at at 



1550 S Simons 

We proceed to develop the right-hand side of equation (33), consistently retaining terms 
up to and including those involving M-3. Now it follows from equation (7) that 

-- ay- - ---(E-+-). 1 a~ aT a+ 
at  T aE at at 

The integral in the last term of equation (33) thus becomes 

1 aT 
-- -(E, M-'Rv,M-'Ev, 

T at 

(34) 

(35) 

The first term in expression (35) is zero since E is orthogonal to M-'Ru,M-'Ev, which 
lies in 9. The second term involves M-4, as may be seen by substituting for @/at from 
equation (16), and can therefore be neglected. As far as the first two terms on the right- 
hand side of equation (33) are concerned, we employ the model (17) with constant z 
and thus obtain 

fEupdk+z2-- a2T a /fEo,dk. 
ax, a t  a t  

On substituting into equation (32) and using result (23) it is found that 

(37) 
dS 1 dU z BT a J  z 2  a2T a J ,  
------+---LJ_--- - 
dt T dt T~ ax, at  T~ axpat at ' 

The first two terms here correspond to those suggested by Lambermont and Lebon 
(1973) but it is seen that the correction to the classical result is now minus that given 
by these authors. The last term in equation (37) is the next correction term in what is 
of course really an infinite series. 

I t  is of interest to obtain from the result (37) an expression for 0, the collision rate of 
entropy production. Using the result dU/dt = - div J and retaining the first two terms 
on the right-hand side of equation (37) it is readily shown that 

and on substituting for dT/ax, from equation (25) we obtain 

where Y = K - ' .  The first term is positive and proportional to z ;  it is the result given 
by classical conduction theory. The second term is proportional to t3 and is the first 
correction to the classical result, which is thus seen to remain unchanged to terms of 
order 7'. This is in contradistinction to the result suggested by Lambermont and Lebon 
(1973), where correction terms proportional to z2 were given. 

Appendix 

We consider here how equation (29) may be expressed in the form (30), obtaining explicit 
expressions for H and U. Using the form (32) for dS/dt, we substitute for af/at from 
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equation (34) and obtain 

of which the last term is zero from equation (12). We substitute for &$/at from equation 
( 9 )  and this gives, in view of equation (12), 

Now dU,’dt = -div J, and using this together with equation (23) allows (A.2) to be 
expressed in the form (30) where 

and 

M can be shown to be a positive definite operator and thus a is positive. 
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